
1

8 Fault Tolerant Distributed Transactions : 2PC 8 Fault Tolerant Distributed Transactions : 2PC

8.1 One Phase Commit
8.2 3PC: nonblocking
8.2 Paxos consensus
8.6 Paxos in practice

x based on Weikum / Vossen; Valduriez / Öszu; Garcia-Molina ; Reuter/ Gray HS-20010 HS / 08-TA-ACP2- 19

8.3 8.3 PaxosPaxos consensusconsensus

Goals
Safety
• Consensus / data consistency in a distributed system

similar to 2PC / 3PC
• Values may be proposed, but only a single value is

chosen (unanimous decision)

Liveness
• Tolerate (non-malicious) failures.
• Some proposed value is eventually chosen.
• A chosen value can be learned (by others, perhaps

recovering nodes)

HS-20010 HS / 08-TA-ACP2- 20

IntroIntro

• Central part of Paxos :

Crash-consensus protocol that
• is always safe.
• may not terminate

but terminates under some liberal constraints
(basically: the system is alive with a sufficient
number of nodes for a sufficient time)

• More General than 2PC /3PC,
2PC may be seen as a special case.

HS-20010 HS / 08-TA-ACP2- 21

Consensus

• N processes want to agree on a value
• Want to tolerate F faults

Tolerate F processes stopping
Tolerate F Messages delayed or lost

• If there are less than F faults in a window
then consensus achieved.

• Note: no blocking
• Benign faults need 2F+1 “acceptors”

stalls but safe if more than F faults

Byzantine faults need 3F “acceptors”

some slides based on Gray, Lamport

HS-20010 HS / 08-TA-ACP2- 22

PaxosPaxos consensus in a nutshellconsensus in a nutshell

Roles
- Processes (proposers, TM,...)
- Acceptors (2F +1 if F faults to be tolerated)
- Learner (processes which have to get

the consensus value, e.g. if they
where down during consensus algorithm)

A thread (or OS process) may have more than
one role, but mapping roles to threads is not
a big deal.
Call the nodes with different roles agent (node)

HS-20010 HS / 08-TA-ACP2- 23

PaxosPaxos leaderleader

• Assume a leader process

• Election of a leader L or a substitute if L fails is a
separate routine (non – trivial, leader election as such
solves the agreement problem – impossible)

• Makes first phase of protocol simpler, but no
principle difference to protocol without leader

• First leader given naturally by application in many
cases - e.g. transaction mgr.

2

HS-20010 HS / 08-TA-ACP2- 24

PaxosPaxos basicsbasics

n nodes, two phases:
(1) Prepare phase: leader sends (ballot number * "prepare")

to all agents (nodes)
Wait for answer from agents a, which encodes answer in
earlier rounds from a (!)

(2) Accept phase: leader sends a value to be accepted,
if quorum (more than n/2) has been reached.
If proposed value is accepted by majority, leader
announces the consensus value.
An agent accepts only, of it had not answered to
a ballot with greater number.

Problem: many rounds can co-occur, depending on failures.

HS-20010 HS / 08-TA-ACP2- 25

PaxosPaxos: properties: properties

• Any proposal number must be unique. Obvious...

how??

• Any two sets of agents have at least one agent in
common.

• In accept phase the value proposed by a leader is the
highest-numbered value proposed by agents in the
prepare phase.
Highest numbered: highest ballot (round) .

HS-20010 HS / 08-TA-ACP2- 26

PaxusPaxus consensusconsensus

Group has a leader known to all
leader election is a subroutine

Process proposes
a value v to leader.

Leader sends proposal (phase 2)
(ballot, value) to all acceptors

Acceptors respond with:
max (ballot, value)
they have seen

If leader gets no higher ballot,
and gets at least F+1 responses
then leader can announce
(ballot, value)

Full protocol 3-phase
Phase 1:

Leader starts new ballot
Phase 2

Leader proposes value
Phase 3

If value accepted by F+1
then value is accepted.

If not, leader tries to get
majority value accepted.

Note: Agents are split into proposers and acceptors.
HS-20010 HS / 08-TA-ACP2- 27

PaxosPaxos Commit Commit

Obvious idea:

• Use more than one TM
• Have TM use Paxos consensus of RMs prepared

with 2F+1 acceptors (in "consensus box")
• No blocking, if a TM fails the other one takes over and

runs a consensus
• TMs and acceptors in the consensus box may (will) be

typically the same.

HS-20010 HS / 08-TA-ACP2- 29

PaxosPaxos CommitCommit

More efficient idea:
2F+1 acceptors (~2F+1 TMs)
Each RM leads a Paxos on: I’m Prepared.
If F+1 acceptors see all RMs prepared,

then transaction committed.
2F(n+1) + 3n + 1 messages

5 message delays (one extra delay)
2 stable write delays.

F=0 3n +1 msg (2PC , not counting acks)

HS-20010 HS / 08-TA-ACP2- 31

PaxosPaxos CommitCommit

RM0

Commit
Leader RM0…N

Acceptors
0…2F

request
commit prepare

prepared

all prepared

commit

Why does it work? Many subtle cases...; proof exists

Stateless (!) TA-Mgr.

3

HS-20010 HS / 08-TA-ACP2- 32

8.6 8.6 PaxosPaxos in practicein practice

Paxos consensus not used for commit processing up to
now.
AACID (Availability + ACID) does not seem to be an

issue in fixed networks
Message overhead in mobile networks

Used for control of replication in
Google lock manager ("chubby")
(see next chapter on replication)
and a distributed file system.

HS-20010 HS / 08-TA-ACP2- 33

SummarySummary
Challenge of distributed transaction processing:

Guarantee of isolation -> concurrency control
-> basically local resource managers

Atomicity in case of failure
Two phase commit: fault tolerant protocol

Log records on stable storage essential
Resource Managers may be blocked (coordinator fails)

Three phase commit: avoids blocking in case of
site failure, not for communication failures

Paxos commit: tolerates f failures with 2f+1 acceptors,
but may end up in live locks.

Many optimizations in practice
X/Open XA etc is the standard for Transaction Mgrs
Application Servers: relief application programmers from idiosyncratic

program structure for distributed applications (and more)

